

Biomarkers in Patients with Hand-Arm Vibration Injury Entailing Raynaud's Phenomenon and Cold Sensitivity, Compared to Referents

International conference 6–9 JUNE 2023 Espace Prouvé, Nancy, France

Eva Tekavec¹ Tohr Nilsson² Lars Dahlin³ Anna Axmon¹ Catarina Nordander¹ Monica Kåredal¹

1AFF7

¹ Division of Occupational and Environmental Medicine,

Department of Laboratory Medicine, Lund University, Sweden

² Division of Sustainable Health and Medicine,

Department of Public Health and Clinical Medicine, Umeå University, Sweden

³Department of Translational Medicine—Hand Surgery, Lund University, Sweden

Aim

To investigate serum levels of biomarkers

indicating inflammation, vascular or neural injury

- I. In Patients with hand-arm vibration injury compared to Referents
- II. In Patients with hand-arm vibration injury with Raynaud's Phenomenon (RP) compared to Patients without RP
- III. In Patients without RP, with and without increased cold sensitivity

Background – Why biomarkers?

DIAGNOSIS GRADING

11

DIAGNOSIS

I. Typical symptoms and clinical findings...
II. Sufficient and time related exposure...
III. Differential diagnoses excluded...

Pain

Numbness

Tingling

Increased cold sensitivity/cold intolerance

Impaired perception of touch

Impaired perception of cold

Impaired perception of warmth

Impaired dexterity

Episodes of finger blanching

ZANCL

DIAGNOSIS

I. Typical symptoms and clinical findings...II. Sufficient and time related exposure...III. Differential diagnoses excluded...

Photo of worst episode of finger blanching

Cold provocation test

-RANCE

Rolke R et al., Hand-arm vibration syndrome: clinical characteristics, conventional electrophysiology and quantitative sensory testing. Clin Neurophysiol. 2013 Aug;124(8):1680-8.

HAND-ARM VIBRATION 6-9 JUNE 2023

DIAGNOSIS

Typical symptoms and clinical findings...

I. Sufficient and time related exposure...

Posterior interosseus nerve

a) control subject withouth CTS

b) Non-diabetic patient with CTS

c) Diabetic patient with CTS

Normal nerve Exposed to vibration

Reduced number of myelinated nerves

> Thomsen, N.O.B. et al. Reduced myelinated nerve fibre and endoneurial capillary densities in the forearm of diabetic and nondiabetic patients with carpal tunnel syndrome. Acta Neuropathol 118, 785–791 (2009).

Stromberget al. Structural nerve changes at wrist level in workers exposed to vibration. Occupational and Environmental Medicine 1997;54:307-31 13

HAND-ARM VIBRATION 6-9 JUNE 2023

DIAGNOSIS

I. Typical symptoms and clinical findings...II. Sufficient and time related exposure...

III. Differential diagnoses excluded...

Table 1. Secondary causes of Raynaud's phenomenon. Reproduced from Devgire V, Hughes M. Raynaud's phenomenon. Br J Hosp Med (Lond) 2019;80:658–64. 1000

Vascular (usually proximal large vessel disease, often unilateral symptoms)	Compressive (eg cervical rib) Obstructive: non-inflammatory (ie atherosclerosis); inflammatory vascular disease (eg thromboangiitis obliterans (Buerger's disease
Occupational	Hand–arm-vibration syndrome (vibration white finger)
Autoimmune conditions	Systemic sclerosis Systemic lupus erythematosus Sjogren's syndrome Mixed connective tissue disease / overlap syndromes Undifferentiated connective tissue disease Idiopathic inflammatory myopathies
Drug-/chemical-related	Amphetamines Beta-blockers Bleomycin Cisplatin Clonidine Cyclosporine Interferons Methysergide Polyvinyl chloride
Conditions associated with increased plasma viscosity and reduced digital perfusion	Cryoglobulinaemia Cryofibrinogenaemia Paraproteinaemia Malignancy (including as a paraneoplastic phenomenon)
Other causes and associations	Carpal tunnel syndrome Frostbite Hypothyroidism

Fig. 1. Normal and scleroderma pattern at nailfold capillaroscopy. Panel A shows a capillaroscopic normal pattern, characterised by hairpin-shaped capillaries with regular morphology, dimensions and number; panel B shows an example of scleroderma pattern, characterised by avascular areas (arrow) and megacapillaries (asterisk); magnification 200×.

Gualtierotti, R., et al., *Detection of early endothelial damage in patients with Raynaud's phenomenon.* Microvascular Research, 2017. **113**: p. 22-28.

ZANCI

Gualtierotti, R., et al., *Detection of early endothelial damage in patients with Raynaud's phenomenon.* Microvascular Research, 2017. **113**: p. 22-28.

GRADING

Stockholm Workshop Scale 1987

Vascular component SWS V0 no symptoms SWS V1 occasionally episodes of finger blanching, only distal phalanges SWS V2 occasionally episodes of finger blanching, distal and middle phalanges

SWS V3 frequent episodes of finger blanching involving all phalanges on most fingers

Sensorineural Component

0 SN Vibration exposed but no symptoms

1 SN Intermittent numbress with or without tingling 2 SN Intermittent or persistent numbress, reduced sensory perception

3 SN Intermittent or persistent numbress, reduced tactile discrimination and/or manipulative dexterity

International Consensus Criteria 2019

HAVS Vascular Component

Anamnesis

tests

Psychophysical

ICC Stage	Description
0V	No attacks of blanching
1V	Digit blanching score 1-4
2V	Digit blanching score 5-12
3V	Digit blanching score >12

HAVS Neurological Component

ICC Stage	Description
0N	No numbness or tingling of digits
1N	Intermittent numbness and /or tingling of digits
2N	As in stage 1 but with sensory perception loss in at least one digit as evidenced by two or more validated methods such as monofilaments, thermal aesthesiometry and vibrotactile thresholds
3N	As in stage 2 but with symptoms of impaired dexterity and objective evidence of impaired dexterity by the Purdue pegboard test

PROGNOSIS

J.

Stop exposure...

..correct diagnosis? ..correct grading?

RANCE

....individual susceptibility?

Vascular vs Sensorineural component

Thrombomoduline (TM)

Increased levels of soluble TM

- a marker for endothelial damage

Kanazuka, M., et al., *Increase in plasma thrombomodulin level in patients with vibration syndrome*. Thromb Res, 1996. 82(1): p. 51-6.

Kao, D.S., et al., *Serological tests for diagnosis and staging of hand-arm vibration syndrome (HAVS).* Hand (N Y), 2008. **3**(2): p. 129-34.

Glial fibrillary acidic protein (GFAP)

619

- a proposed marker for axonal damage
- detected in nerve biopsies in type 2 diabetes subjects and controls
- elevated serum levels correlate to decreased nerve action potentials

Rossor, A.M. and M.M. Reilly, Blood biomarkers of peripheral neuropathy. Acta Neurologica Scandinavica, 2022. 146(4): p. 325-331. Ising, E., et al., Quantitative proteomic analysis of human peripheral nerves from subjects with type 2 diabetes. Diabet Med, 2021. 38(11): p. e14658. Notturno, F., et al., Glial fibrillary acidic protein as a marker of axonal damage in chronic neuropathies. Muscle Nerve, 2009. 40(1): p. 50-4.

Study group

Biomarkers

Blood samples collected in the morning in 7 mL serum separation tubes with gel and clot activator

After 30 minutes serum was removed by centrifugation and the samples were stored at -80 °C until analysis

ELISA kits: TM, GFAP

Values below the limit of detection (LOD) were awarded a value equal to half LODs (TM: 0.625 ng/ml, GFAP:31 pg/ml)

Patients

Referents

	All n=92	+RP n=45	-RP n=47	n=51
Age [years; median (range)]	45(21-64)	45 (24-64)	45 (21-64)	42 (26-62)
Females [n (%)]	6 (7)	1 (2)	5 (11)	9 (18)
Ongoing cigarette smoking [n (%)]	14 (15)	8 (18)	6 (13)	2 (4)
Other medical conditions				
Previous frostbites [n (%)]	107(11)	6 ⁴ (13)	$4^{3}(9)$	3 ¹ (6)
Cardiovascular disease [n (%)]	18 (20)	10 (22)	8 (17)	7(14)
Diabetes [n (%)]	6 (7)	4 (9)	2 (4)	2 (4)
Thyroid diseases [n (%)]	5 (5)	4 (9)	1 (2)	1 (2)
Rheumatic disease [n (%)]	0(0)	0 (0)	0 (0)	0 (0)
Polyneuropathy [n (%)]	4 (4)	4 (9)	0	Missing
Symptoms				
Raynaud's phenomenon [n (%)]	45 (49)	100	0 (0)	5 (10)
Numbness/tingling [n (%)]	90 (98)	45 (100)	45 (96)	7 (14)
Nocturnal numbness/tingling	67 (73)	37 (82)	30 (64)	3 (6)
Cold intolerance [n (%)]	80 (87)	44 (98)	36 (77)	6 (12)
Impaired dexterity [n (%)]	65 (71)	36 (80)	29 (62)	4 (8)
Impaired grip strength [n (%)]	72 (78)	36 (80)	36 (77)	4 (8)
Clinical finding left or right hand				
Impaired perception of touch [n (%)]	45 (49)	29 (64)	16 (34)	6 (12)

	Patients	Referents	
Biomarker primary function	n=92	n=51	
	median (min-max)	Median (min-max)	p-value
Endothelial dysfunction			Kr
TM (ng/mL)	5.5 (2.3–39)	4.3(0.3–34)	0.02
	N	ANC	
Nerve injury	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
GFAP (pg/mL)	15(15-3100) Mann-Whitney U	15(15–2800) test for comparison of distribu	0.51 Itions between groups

TM remained statistically significant after sensitivity analyses excluding (one at a time)

- Current smokers
 - Females
- Subjects with concurrent diseases
- Previous frostbites

	HAVS patients with Raynauds Phenomenon n=45 ^a	HAVS patients without Raynauds Phenomenon n=47 ^b	Referents p-value				
			n=51°		-		
	median (min-max)	<mark>median (min-max)</mark>	median (min-max)	p ^{abc}	р ^{аb}	p ^{ac}	p ^{bc}
Endothelial dysfunction							
TM (ng/mL)	6.1 (2.7–30)	5.2 (2.3–39)	4.3 (0.3–34)	0.004	0.02	<0.001	
Nerve injury							
GFAP (pg/mL)	15 (15—3100) 🖉 🥒	15 (15–2500)	15 (15-2800)	0.45			
P-v Pos			Rruskal Wallis for comparing distributions between groups P-values in boldface denotes statistically significant differences				
			ost hoc analyses with Mann-Withney U test				

TM remained significant after sensitivity analyses excluding current smokers, females and "concurrent diseases", one at a time but not when excluding "previous frostbites" (p=0.06)

Clinical implications of biomarkers

- Used as an objective method for diagnosis and grading?
- Further explain individual prognosis and suceptibility?
- Identifying early injury? Preventive work
- > In the future: development of pharmacological treaments??

Thank you!

Elizabeth Huynh for analyses of biomarkers Ulla Andersson, Else Åkerberg Krook, Eva Assarsson, Anna Larsson for collection of blood samples and handling of data

The patients and referents participating in the study

AFA insurance

ANC,